Calculate the A-optimal design under the second-order Least squares estimator
Source:R/Aopt.R
Aopt.Rd
Calculate the A-optimal design under the second-order Least squares estimator
Arguments
- N
The number of sample points in the design space.
- u
The discretized design space.
- tt
The level of skewness between 0 to 1 (inclusive). When tt=0, it is equivalent to compute the A-optimal design under the ordinary least squares estimator.
- FUN
The function to calculate the derivative of the given model.
- theta
The parameter value of the model.
- num_iter
Maximum number of iteration.
Value
A list that contains 1. Value of the objective function at solution. 2. Status. 3. Optimal design
Details
This function calculates the A-optimal design and the loss function under the A-optimality. The loss function under A-optimality is defined as the trace of the inverse of the Fisher information matrix
Examples
poly3 <- function(xi, theta){
matrix(c(1, xi, xi^2, xi^3), ncol = 1)
}
Npt <- 101
my_design <- Aopt(N = Npt, u = seq(-1, +1, length.out = Npt),
tt = 0, FUN = poly3, theta = rep(0,4), num_iter = 2000)
round(my_design$design, 3)
#> location weight
#> 1 -1.00 0.161
#> 10 -0.82 0.001
#> 11 -0.80 0.001
#> 12 -0.78 0.001
#> 13 -0.76 0.002
#> 14 -0.74 0.002
#> 15 -0.72 0.002
#> 16 -0.70 0.002
#> 17 -0.68 0.002
#> 18 -0.66 0.002
#> 19 -0.64 0.002
#> 20 -0.62 0.002
#> 21 -0.60 0.002
#> 22 -0.58 0.002
#> 23 -0.56 0.002
#> 24 -0.54 0.002
#> 25 -0.52 0.002
#> 26 -0.50 0.001
#> 27 -0.48 0.001
#> 28 -0.46 0.001
#> 34 -0.34 0.308
#> 68 0.34 0.308
#> 74 0.46 0.001
#> 75 0.48 0.001
#> 76 0.50 0.001
#> 77 0.52 0.002
#> 78 0.54 0.002
#> 79 0.56 0.002
#> 80 0.58 0.002
#> 81 0.60 0.002
#> 82 0.62 0.002
#> 83 0.64 0.002
#> 84 0.66 0.002
#> 85 0.68 0.002
#> 86 0.70 0.002
#> 87 0.72 0.002
#> 88 0.74 0.002
#> 89 0.76 0.002
#> 90 0.78 0.001
#> 91 0.80 0.001
#> 92 0.82 0.001
#> 101 1.00 0.161
my_design$val
#> [1] 32.92169