18 Lecture 17, Feburary 14, 2024

18.1 More about expectation

Some observations we made from the example we went through in class.

  1. Suppose \(X\) is a random variable satisfying \(a \le X(\omega) \le b\) for all \(\omega \in S\). Then \(a<E[X]<b\).

  2. We may think that the expectation is a weighting of the values \(x\in X(S)\) by its probability function (which is always positive, and sum up to one).

18.2 Law of Unconscious Statistician

If \[ g: {\mathbb R} \to {\mathbb R}, \] and \(X\) is a random variable with probability function \(f\), then \(g(X)\) is a random variable taking values \(g(X(S))\) and

\[ E[g(X)] = \sum_{x \in X(S)} g(x) f(x) \]

NOTE: In general, \(E[g(X)]\ne g(E[X])\)!

e.g. For an arbitrary convex function \(g(X)\), \(g\{E(X)\} \le E\{g(x)\}\). This is a famous theorem called Jansen’s inequality.

18.3 Tricks

Sometimes, in order to calculate the expectation, some terminologies may help

  1. For \(x\in X(S)\), \(\sum_{x\in X(S)} f_X(x)=1\).

18.4 Property of expectation - linearity

Suppose the random variable \(X\) has \(E[X]=\mu\). Then for any constants \(a,b\in\mathbb{R}\), \[ E[aX+b]= a \mu + b = a E[X]+b\]

If we have 2 random variables \(X\) and \(Y\), and three constants, \(a,b,c\in \mathbb{R}\), then \[ E[aX+bY + c] = aE[X] + bE[Y] +c. \]

18.4.1 Proof.

Proof. By the Law of unconscious statistician with \(g(x)=ax+b\), we find \[\begin{align*} E[aX+b] &=\sum_{x\in X(S)} (ax+b) f(x)\\ & = a \cdot \sum_{x\in X(S)} x f(x) + b \cdot \sum_{x\in X(S)} f(x) \\ &= a\cdot E[X] + b \cdot 1 \end{align*}\]

18.5 Mean of binomial distribution

If \(X \sim Binomial(n,p)\), then \(E[X] = np\)

Proof. Suppose \(X \sim Bin(n,p)\). Then we have \[\begin{align*} E[X] &= \sum_{x=0}^n x\cdot \binom{n}{x} p^x (1-p)^{n-x}\\ &= \sum_{x=1}^n x\cdot \frac{n!}{(n-x)!x!} \cdot p^x (1-p)^{n-x}\\ &= \sum_{x=1}^n \frac{x}{x(x-1)!} \frac{n(n-1)!}{(n-x)!} p p^{x-1} (1-p)^{n-x}\\ &= \sum_{x=1}^n \frac{1}{(x-1)!}\frac{n(n-1)!}{(n-x-1+1)!} p p^{x-1} (1-p)^{n-x-1+1}\\ &= np \sum_{x=1}^n \frac{1}{(x-1)!}\frac{(n-1)!}{((n-1)-(x-1))! (x-1)!} p\cdot p^{x-1} (1-p)^{(n-1)-(x-1)}\\ &= np \; \underbrace{\sum_{y=0}^{n-1} \frac{(n-1)!}{((n-1)-y)! y!} \cdot p^{y} (1-p)^{(n-1)-y}}_{=1\text{b/c sum of PF of bin(n-1,p). is 1}}\\ &= np \end{align*}\]